

Investigating the Cracking, Rutting, and Moisture Resistance of Various Asphalt Mixes in Oklahoma

INTRODUCTION

- \succ Cracking and rutting are the most common distresses in asphalt pavements.
- > The Superpave method relies heavily on volumetric properties.
- > A balanced mix design (BMD) approach is based on performancerelated testing
- \succ A BMD mix is stiff enough to provide good rutting resistance and ductile enough to provide good cracking resistance.
- > The indirect tensile asphalt cracking test (IDEAL-CT) has been adopted by many state agencies as a cracking tests.
- ➤ The Hamburg Wheel Tracking (HWT) test has historically been used to assess rutting and moisture.
- \triangleright BMD mixes need to be checked for moisture resistance.
- > Moisture-induced damage can be detrimental to pavement performance. The ingress of water into asphalt pavements leads to several distresses including freeze-thaw damage.
- ➤ The AASHTO T 283 test is currently used by the ODOT to evaluate moisture resistance of asphalt mixes. The Moisture-induced stress tester (MiST) device is a method to simulates the effect of pore water pressure due to traffic.

RESEARCH OBJECTIVES

- > Assess the impact of different mix variables on the cracking and rutting resistance of asphalt mixes using IDEAL-CT and HWT, respectively.
- \succ Identify the effect of moisture conditioning on the asphalt pavement performance, prepared by various raw materials in Oklahoma, by performing the AASHTO T-283 method and MiST.

METHODOLOGY

Sina Mousavi Rad, Mohamed Elkashef School of Civil & Environmental Engineering - Oklahoma State University (OSU)

Mix ID	Gradation	Binder PG	AC %	Aggregate Type
S4-70-L	S4	PG 70-28	5.1%	Limestone
S5-64-L	S5	PG 64-22	5.9%	Limestone
S4-64-L	S4	PG 64-22	5.1%	Limestone
S4-70-G	S4	PG 70-28	5.1%	Granite
S5-64-G	S5	PG 64-22	5.9%	Granite

RESULTS & ANALYSIS

Tukey's test results

~			
Mix in Comparison	Variable	P-value (CT _{Index})	P-value (Strength)
4-70-L & S4-70-G	Aggregate Type	0.039	0.999
5-64-L & S5-64-G	Aggregate Type	0.918	0.975
4-64-L & S4-70-L	Binder Type	0.000	0.000
4-64-L & S5-64-L	Aggregate Gradation/AC Content	0. 457	0.999

From IDEAL-CT;

- 1. The binder type had the most significant effect on CT_{index}
- From HWT:

From Moisture Susceptibility;

Federal Highway Administration. The authors would also like to acknowledge Ingevity, APAC, Paul Ratley, and Ben Rojas from ODOT for their input and assistance with this project.