

Enhancement of Data Analysis Procedure of Traffic Speed Deflection Device for **Pavement Structural Evaluation** M. Mendez Larrain¹, S.Ali¹, K.Hobson¹, and M. Zaman¹ (1) The University of Oklahoma

1. Introduction

Pavement management is "the effective and efficient directing of the various activities involved in providing and sustaining pavements in a condition acceptable to the traveling public at the least life cycle cost (AASHTO)"

2. Fast Falling Weight Deflectometer & Traffic Speed Deflection Device (FFWD & TSDD)

- Discrete locations

loading

- Force applied trough stationary plate - Deflections measured with geophones
- High accuracy
- Zero speed measurement (impact) - Directions of stress and strains vectors remain constant during testing

3. Literature Review

E Moduli

Parameter

1. Maximum deflection	D ₀ as measured	
2. Base Layer Index (BLI) also	$SCI = BLI = D_0 - D_{300}$	
known as Surface Curvature Index		High correlation for deflections under the
(SCI)		
3. Middle Layer Index (MLI) also	$BDI = MLI = D_{300} - D_{600}$	
known as Base Damage Index (BDI)		
4. Lower Layer Index (LLI) also	$BCI = LLI = D_{600} - D_{900}$	
known as Base Curvature Index		
(BCI)		Structural Number Effective (SNeff) highly
5. Spreadability, S	$S = \frac{\left\{ \left[\frac{D_0 + D_{300} + D_{600} + D_{900}}{5} \right] 100 \right\}}{5}$	correlated for FWD and TSDD
	<u> </u>	
6. Area, A	$\Lambda = \frac{6[D_0 + 2D_{300} + 2D_{600} + D_{900}]}{6}$	SCI12 or SC300 highly correlated for FWD
	$A = D_0$	and TSDD
7. Shape factors	$F1 = (D_0 - D_{600}) / D_{300}$	E moduli backcoloulation well correlated
	$F2 = (D_{300} - D_{900}) / D_{600}$	
8. Slope of Deflection	$SD = \tan^{-1}(D_0 - D_{600})/600$	for FWD and ISDD
9. Additional shape factor	$F3 = (D_{600} - D_{1200})/D_{900}$	
10 Area under pavement profile	$(5D_{0} - 2D_{000} - 2D_{000} - D_{000})$	$SCI_{Ref} = 10^{-0.0521T_{Ref}+0.0322T_{Ref}}$
	$AUPP = \frac{(3D_0 - 2D_{300} - 2D_{600} - D_{900})}{2}$	$\lambda = \frac{100}{SCI_T} = \frac{1000}{10^{-0.0521T + 0.0322T}}$
11. Additional areas	$A_{2} = \frac{6(D_{300} + 2D_{450} + D_{600})}{6(D_{300} + 2D_{450} + D_{600})}$	where
	$A2 = D_0$	λ = Temperature adjustment factor
	$A3 = \frac{6(D_{600} + 2D_{900} + D_{1200})}{-}$	SCI = Adjusted SCITSD at reference
	D_0	- $ -$
12. Area indices	$AII = (D_0 + D_{300})/2D_0$	T_{Ref} = Reference temperature, C
	$AIZ = (D_{300} + D_{600})/2D_0$ $AIZ = (D_1 + D_2)/2D_0$	T = Mid-depth AC layer temperature a
	$AI3 = (D_{600} + D_{900})/2D_0$	$h = \Lambda c n halt layor thicknoss mm$
	$AI4 = (D_{900} + D_{1200})/2D_0$	

000	1200	<u> </u>	0			
Schn	oor	&	Hor	ak,	20	12

 $\lambda = \frac{SCI_{Ref}}{M} = \frac{10^{-0.0521T}Ref^{+0.0322T}Ref\log(h_{AC})}{M}$ $10^{-0.0521T+0.0322T \log(h_{AC})}$ SCI_T

 λ = Temperature adjustment factor *SCI_{Ref}* = Adjusted SCITSD at reference temperature T_{Ref} = Reference temperature, ° C T= Mid-depth AC layer temperature at time of measurement, $^{\circ}$ h_{AC}= Asphalt layer thickness, mm

- Continuous measurements
- Force applied trough wheels
- -Deflections integrated from velocity
- measurements with Doppler lasers
- Accuracy loss compensated by averaging
- High measurement speed
- -Dynamic load is more representative of traffic
- Vectors for stress and strain rotate during test

NODULUS[®]

Criteria	Reference					
D0	Virginia DOT (2017)					
	Flintsch et al. (2012)					
SNeff	Zihan et al. (2018)					
SCI12	Muller (2013					
E	Elbagalti et al. (2017)					

– (Nasimifar, et al., 2018)

4. Data and Results

This study covers a 14.5-mile section on I-35 and a 5-mile section on SH-7. TSDD data was collected on the same segments of I-35 and SH-7 by the Oklahoma Department of Transportation (ODOT) as part of a pooled fund study conducted by Virginia Tech Transportation Institute (VTTI). FFWD and coring was conducted by the University of Oklahoma in collaboration with ODOT. Texas Transportation Institute (TTI) at Texas A&M University (TAMU) collected subsurface data by using a 1-GHz air-coupled GPR (TTI-GPR).

IRI_AVG (in/mi) —RUT_AVG (in)

4. Random Forest (RF) Model and Linear Regressions for E and SNeff

It is a nonparametric and tree-based approach. This model is minimally influenced by the hyper parameters and has a faster convergence speed. A python model was created to compare the different combinations. For E Moduli I-35 and SH-7

5. Conclusions

•Random forest models performed better than Linear regression for training and validation sets. A better performance of RF models was observed in SH-7 compared to I-35. •The temperature correction did improve the model significantly. The relationship between FWD (D0 •Roughness and rut showed a similar trending. As per influence in the models, IRI showed to be an important variable for I-35 and rut for SH-7.

Learning (DL) methods.

Acknowledgements

Institute (VTTI)

For FWD (D0) SH-7 Only

						Random Forest				Linear Regression			
Variable 1	Variable 2	Variable 3	Variable 4	Variable 5	Variable 6	MAE	MAE	RM SE	RM SE	MAE	MAE	RM SE	RM SE
						Train	Val	Train	Val	Train	Val	Train	Val
TSD (D8)	AUUP	SCI8	SCI12			0.19	0.41	0.26	0.61	0.41	0.50	0.53	0.63
TSD (D8)	TSD (D12)	AUUP	SCI8	SCI12	DSI(8-18)	0.19	0.42	0.26	0.63	0.40	0.48	0.53	0.61
AUUP	DSI(8-18)	BCI				0.27	0.43	0.35	0.53	0.48	0.45	0.60	0.55

[Ì		Random Forest				Lin ear Regression			
	Variable 1	Variable 2	Variable 3	Variable 4	Variable 5	Variable 6	Variable 7	MAE	MAE	RMSE	RM SE	MAE	MAE	RM SE	RMSE
								Train	Val	T rain	Val	Train	Val	Train	Val
	Area	SCI8	SCI12	DSI(8-12)	AI2			0.09	0.19	0.11	0.27	0.22	0.20	0.28	0.25
	AUUP	SCI8	AI2					0.10	0.20	0.12	0.28	0.22	0.20	0.28	0.25
	S	Area	SCI8	DSI(8-12)	AI2			0.09	0.20	0.12	0.27	0.21	0.22	0.27	0.28

•Prediction of pavement condition parameters is possible by using Artificial Intelligence (AI), Machine Learning (ML) and Deep