

# **Developing Predictive Models for Fuel Consumption and Maintenance Cost** using Equipment Fleet Data

Saurav Shrestha<sup>1</sup>, Arpan Chaudhary<sup>1</sup>, Yongwei Shan<sup>1</sup>, Gouranga Banik<sup>2</sup>, Cheng Zhang<sup>1</sup>, Cristian Contreras Nieto<sup>1</sup> <sup>1</sup>Department of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma. <sup>2</sup>College of Engineering, University of New Orleans, New Orleans, Louisiana

## Abstract

- For DOT, equipment management is the most important task as it runs several heavy civil maintenance and construction projects that require a large number of equipment.
- This research develops the predictive model for fuel consumption and maintenance cost utilizing the construction equipment data provided by the ODOT.
- The predictive model will help
- DOT to allocate budget optimally.
- Facilitate the equipment rental rate update process.

### **Objectives**

- To develop the predictive models, using regression analysis, of:
  - The annual fuel consumption per equipment type
  - The cumulative maintenance cost associated with the equipment

## **Data and Methodology**

- Data Source: ODOT
- Data Preparation and Processing
- MySQL Workbench was used to analyze and compile the data received from Agile Assets equipment inventory database together.
- Data set was divided into two categories:
- Equipment charged by dollar/mile (trucks, pick-up trucks, cabs, etc.)



**Figure 1. Fuel consumption prediction model flow chart** 



**Figure 2. Maintenance cost prediction model flow chart** • Multiple Regression analysis was chosen to create the models  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n$ 

Y = Fuel Consumption – for fuel consumption models Y = Cumulative Maintenance cost - for maintenance cost models $\beta_0, \beta_1, \beta_2, \beta_3, \dots, \beta_n = \text{Coefficients}$  $X_1, X_2, X_3, \dots, X_n =$  Input Variables (Table 1)

| Table 1. Input Variables used for Multiple Regression Analysis |                                              |  |  |  |
|----------------------------------------------------------------|----------------------------------------------|--|--|--|
| Input Variables                                                | Description                                  |  |  |  |
| ORIGINAL_VALUE                                                 | Purchase price of the equipment              |  |  |  |
| Yearly_hours                                                   | Yearly hours worked by the equipment         |  |  |  |
| _CLASS_CODE_ID                                                 | Put integer value 1, it includes a number of |  |  |  |
|                                                                | similar kind of equipment.                   |  |  |  |
| YEARLY_MILES                                                   | Yearly miles are driven                      |  |  |  |
| Age                                                            | The current age of the equipment             |  |  |  |
| CURRENT_ODOMETER                                               | Current odometer value of the equipment      |  |  |  |
| Useful_life_eq                                                 | Probable life of equipment given by the      |  |  |  |
|                                                                | manufacturer                                 |  |  |  |

# models

Fuel consum equipment Fuel consum equipment Maintenance equipment Maintenance equipment

 $-47.5636(Intercept) + ORIGINAL_VALUE * (.00110) + Yearly\_hours * (1.9703) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5121 * (-92.1433) + \_CLASS\_CODE 5120 * (-62.7692) + \_CLASS\_CODE 5120 * \_CLASS$  $CLASS\_CODE 5123 *(-132.5) + CLASS\_CODE 5189 * (-56.0303) + CLASS\_CODE 5191 *(53.9059) + CLASS\_CODE 5236 * (62.4718) + CLASS\_CODE 5189 * (-56.0303) + CLASS\_CODE 5191 *(53.9059) + CLASS\_CODE 5236 * (62.4718) + CLASS\_CODE 5189 * (-56.0303) + CLASS\_CODE 5191 *(53.9059) + CLASS\_CODE 5236 * (62.4718) + CLASS\_CODE 5189 * (-56.0303) + CLASS\_CODE 5191 *(-56.0303) + CLASS\_CODE 5191 *(-56.030) + CLASS\_CODE 5191 *(-56.030) + CLASS\_CODE 5191 *(-56.030) + CLAS\_CODE 5191 *(-56.030) + CLAS\_CODE$  $5237 * (260.2) + CLASS\_CODE 5238 * (75.4559) + CLASS\_CODE 5355 * (-70.8765) + CLASS\_CODE 5357 * (-97.7508) + CLASS\_CODE 5360 * (-64.3132)$  $+ \_CLASS\_CODE 5362 * (71.7761) + \_CLASS\_CODE 5371 * (-17.2746) + \_CLASS\_CODE 5375 * (179.5) + \_CLASS\_CODE 5378 * (-70.5771)$ 

#### Equation 1. Fuel consumption predictive model for the equipment charged by dollar/hour

 $8.5127 (intercept) + Age * (-18.2660) + YEARLY_MILES * (0.1075) + ORIGINAL_VALUE * (.00614) + CURRENT_ODOMETER * (.00115) + CLASS_CODE_ID$ 5085 \* (752.4) + CLASS\_CODE\_ID 5086 \* (-638.8) + CLASS\_CODE\_ID 5089 \* (-411.9) + CLASS\_CODE\_ID 5090 \* (-364.9) + CLASS\_CODE\_ID 5385 \* (-619)  $+CLASS\_CODE\_ID 5386 * (-525.5) + CLASS\_CODE\_ID 5388 * (-819.1) + CLASS\_CODE\_ID 5392 * (-191.3) + CLASS\_CODE\_ID 5393 * (-172.2)$ +*CLASS\_CODE\_ID* 5394 \* (-213.8) +*CLASS\_CODE\_ID* 5395 \* (-780.9) +*CLASS\_CODE\_ID* 5398 \* (-332) +*CLASS\_CODE\_ID* 5399 \* (59.6537)  $+CLASS\_CODE\_ID\ 5401\ *\ (-100.9)\ +CLASS\_CODE\_ID\ 5402\ *\ (-39.3478)\ +CLASS\_CODE\_ID\ 5404\ *\ (99.8479)\ +CLASS\_CODE\_ID\ 5407\ *\ (-46.6372)\ +CLASS\_CODE\_$  $CLASS\_CODE\_ID 5418 * (247.9) + CLASS\_CODE\_ID 5419 * (232.5) + CLASS\_CODE\_ID 5420 * (164.2) + CLASS\_CODE\_ID 5421 * (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (142.1) + (1$  $CLASS\_CODE\_ID 5425 * (436.7) + CLASS\_CODE\_ID 5427 * (148.1) + CLASS\_CODE\_ID 5428 * (701.7) + CLASS\_CODE\_ID 5429 * (403.4)$  $+CLASS\_CODE\_ID\ 5430 * (337.3) + CLASS\_CODE\_ID\ 5431 * (339.5) + CLASS\_CODE\_ID\ 5433 * (634.4) + CLASS\_CODE\_ID\ 5434 * (136.4)$ +*CLASS\_CODE\_ID* 5435 \* (429.5) + *CLASS\_CODE\_ID* 5441 \* (846) + *CLASS\_CODE\_ID* 5442 \* (-596.3)

### Equation 2. Fuel consumption predictive model for the equipment charged by dollar/mile



#### **Figure 3: Validation data model for fuel consumption** for equipment charged by dollar per hour

3417.1 (intercept) + EQUIPMENT\_CLASS\_CODE\_ID 5121 \* (-2788.3) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 5121 \* (-2788.3) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 5121 \* (-2788.3) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 5121 \* (-2788.3) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 5121 \* (-2788.3) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 5121 \* (-2788.3) + EQUIPMENT\_CLASS\_CODE\_ID 5123 \* (-2581.6) + EQUIPMENT\_CLASS\_CODE\_ID 513 \* (-2581.6) + EQ  $5189 * (-1691.9) + EQUIPMENT\_CLASS\_CODE\_ID 5237 * (14100.3) + EQUIPMENT\_CLASS\_CODE\_ID 5238 * (3729.5) + EQUIPMENT\_CLASS\_CODE\_ID$  $5355 * (-1947.3) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLASS\_CODE\_ID 5360 * (-3356.9) + EQUIPMENT\_CLASS\_CODE\_ID 5357 * (-1175.3) + EQUIPMENT\_CLAS\_CODE\_ID 5357 * (-1175.3) + EQUIP$ 5375 \* (-1911.4) + CURRENT ODOMETER\*CURRENT ODOMETER\* CURRENT ODOMETER \* (1.318E-6) +  $CURRENT\_ODOMETER*CURRENT\_ODOMETER*Useful\_life\_eq*(-0.00025) + CURRENT\_ODOMETER*CURRENT\_ODOMETER*age*(-0.00080) + CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*age*(-0.00080) + CURRENT\_ODOMETER*CURRENT\_ODOMETER*age*(-0.00080) + CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*age*(-0.00080) + CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_ODOMETER*CURRENT\_OD$ CURRENT\_ODOMETER\* Useful\_life\_eq \*age \* (0.2577)ORIGINAL\_VALUE\*ORIGINAL\_VALUE\*age\* (-1.11E-7)

#### Equation 3. Maintenance Cost predictive model for the equipment charged by dollar/hour

 $42546.4 (intercept) + age (-27877.2) + age * age (6797.3) + CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8) + CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOMETER*CURRENT_ODOM$  $EQUIPMENT\_CLASS\_CODE\_ID\ 5086\ *\ (39985.8)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5089\ *\ (1102.8)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5090\ *\ (966.8)\ + EQUIPMENT\_CLASS\_$  $EQUIPMENT\_CLASS\_CODE\_ID 5385 * (-2335.7) + EQUIPMENT\_CLASS\_CODE\_ID 5386 * (4278.2) + EQUIPMENT\_CLASS\_CODE\_ID 5393 * (-13391.5)$  $+ EQUIPMENT\_CLASS\_CODE\_ID\ 5394\ *\ (-2197.4)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5395\ *\ (2516.3)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5399\ *\ (-15484.2)$  $+ EQUIPMENT\_CLASS\_CODE\_ID\ 5401\ *\ (-6417.6)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5407\ *\ (-1275.4)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5418\ *\ (-4730.4)$  $+ EQUIPMENT\_CLASS\_CODE\_ID\ 5419\ *\ (-5336.9)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5420\ *\ (474.1)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5428\ *\ (6079)$  $+EQUIPMENT\_CLASS\_CODE\_ID 5429 * (20515.4) + EQUIPMENT\_CLASS\_CODE\_ID 5431 * (253.3) + EQUIPMENT\_CLASS\_CODE\_ID 5434 * (-3502.7)$  $+ EQUIPMENT\_CLASS\_CODE\_ID\ 5435\ *\ (-918.8)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5441\ *\ (-2680.5)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 5442\ *\ (-6956.4)\ + EQUIPMENT\_CLASS\_CODE\_ID\ 54442\ *\ (-6956.4)\ + EQUIPMENT\_CLASS\_CODE\_$ 

#### Equation 4. Maintenance Cost predictive model for the equipment charged by dollar/mile

### Results

#### Table 2. R-Square and Adjusted R-Square values of the

| MODEL                  | <b>R-Square</b> | Adjusted R-<br>Square |
|------------------------|-----------------|-----------------------|
| nption for dollar/hour | 0.7701          | 0.7690                |
| nption for dollar/mile | 0.7851          | 0.7835                |
| e Cost for dollar/hour | 0.6182          | 0.5999                |
| e cost for dollar/mile | 0.4864          | 0.4246                |

Table 3. Example of analysis of maximum likelihood estimates of fuel consumption predictive model for the equipment charged by dollar/hour.

| Parameter        | DF    | Standard<br>Estimate | Error    | t Value | <b>Pr</b> >  t |
|------------------|-------|----------------------|----------|---------|----------------|
| Intercept        | 1     | -47.5636             | 17.8232  | -2.67   | 0.0077         |
| ORIGINAL_VALUE   | 1     | 0.00110              | 0.000231 | 4.74    | <.0001         |
| Yearly_hours     | 1     | 1.9703               | 0.0257   | 76.54   | <.0001         |
| _CLASS_CODE 5120 | 1     | -62.7692             | 20.7491  | -3.03   | 0.0025         |
| _CLASS_CODE 5121 | 1     | -92.1433             | 25.6897  | -3.59   | 0.0003         |
| _CLASS_CODE 5123 | 1     | -132.5               | 24.1089  | -5.50   | <.0001         |
| _CLASS_CODE 5189 | 1     | -56.0303             | 17.0892  | -3.28   | 0.0011         |
| •••••            | • • • | •••                  | •••      | • • •   | •••            |



#### Figure 4: Validation data model for fuel consumption for equipment charged by dollar per mile



# **Conclusion and Contribution**

Results

- The predictive model developed in this study accounts for the prediction of fuel consumption and maintenance cost of the equipment
- The result could be taken into account for budget estimation, rental rate ralated decisions alculations and aquinment maintenance

| calculations and equipment maintenance related decisi |                            |  |  |  |
|-------------------------------------------------------|----------------------------|--|--|--|
| Good Predictor to forecast:                           |                            |  |  |  |
| Fuel Consumption                                      | Maintenar                  |  |  |  |
| • Purchase price of the equipment                     | • Current odomete          |  |  |  |
| • Yearly hours worked by the                          | equipment                  |  |  |  |
| equipment                                             | $\circ$ Useful life of the |  |  |  |
| • Present age of the equipment                        | $\circ$ Present age of the |  |  |  |
| • Current odometer reading of the                     | ○ Purchase price o         |  |  |  |
| equipment                                             |                            |  |  |  |
| L.                                                    |                            |  |  |  |

The predictive accuracy of the developed model depends upon the number of data available for the equipment.

### Recommendation

- Similar study to be carried out to develop maintenance cost model using parameters like engine size, number of axles, etc.
- Another study to be performed by distinguishing equipment based on the type of the fuel consumed and developing predictive models for a particular type of fuel consumption.
- Separate maintenance cost predictive models to be developed for preventive and scheduled maintenance, and repairs and breakdowns.

### Acknowledgement

We would like to thank Oklahoma Department of Transportation for sharing the data required for this study.

### References

Abolhasani, S., Frey, H. C., Kim, K., Rasdorf, W., Lewis, P., and Pang, S.n. (2008). "Real-world in-use activity, fuel use, and emissions for nonroad construction vehicles: a case study for excavators." Journal of the Air & Waste Management Association, 58(8), 1033-1046.

Akcelik, R., and Besley, M. "Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION." Proc., 25th conference of Australian institutes of transport research (CAITR 2003), University of South Australia Adelaide, Australia, 1-15.



**Figure 6: Validation** data model for maintenance cost for equipment charged by dollar per mile

nce Cost er reading of the

e equipment he equipment of the equipment