Developing Predictive Models for Fuel Consumption and Maintenance Cost using Equipment Fleet Data
Saurav Shrestha ${ }^{1}$, Arpan Chaudhary ${ }^{1}$, Yongwei Shan ${ }^{1}$, Gouranga Banik ${ }^{2}$, Cheng Zhang ${ }^{1}$, Cristian Contreras Nieto ${ }^{1}$
${ }^{1}$ Department of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma.
${ }^{2}$ College of Engineering, University of New Orleans, New Orleans, Louisiana

Abstract

- For DOT, equipment management is the most important task as it runs several heavy civil maintenance and construction projects that require a arge number of equipment.
This research develops the predictive model for fuel consumption and maintenance cost utilizing the construction equipment data provided by the ODOT.
The predictive model will help
- DOT to allocate budget optimally.
- Facilitate the equipment rental rate update process.

> Objectives

- To develop the predictive models, using regression analysis, of

The annual fuel consumption per equipment type
The cumulative maintenance cost associated with the equipment

Data and Methodology

- Data Source: ODOT

Data Preparation and Processing
MySQL Workbench was used to analyze and compile the data received from Agile Assets equipment inventory database together Data set was divided into two categories:
Equipment charged by dollar/mile (trucks, pick-up trucks, cabs, etc.) Equipment charged by dollar/hour (Heavy civil equipment)

Figure 1. Fuel consumption prediction model flow chart

Figure 3: Validation data model for fuel consumption for equipment charged by dollar per hour

for equipment charged by dollar per hour

Results
Table 3. Example of analysis of maximum likelihood estimates of

Table 2
models

MODEL	R-Square	Adjusted R- Square
Fuel consumption for dollar/hour equipment	0.7701	0.7690
Fuel consumption for dollar/mile equipment	0.7851	0.7835
Maintenance Cost for dollar/hour equipment	0.6182	0.5999
Maintenance cost for dollar/mile equipment	0.4864	0.4246

fuel consumption predictive model for the equipment charged by dollar/hour.

Parameter	DF	Standard Estimate	Error	t Value	Pr $>\|\mathrm{t}\|$
Intercept	1	-47.5636	17.8232	-2.67	0.0077
ORIGINAL_VALUE	1	0.00110	0.000231	4.74	$<.0001$
Yearly_hours	1	1.9703	0.0257	76.54	$<.0001$
CLASS_CODE 5120	1	-62.7692	20.7491	-3.03	0.0025
CLASS_CODE 5121	1	-92.1433	25.8697	-3.59	0.0003
CLASSCODE 5123	1	-132.5	24.1089	-5.50	$<.0001$
CLASS_CODE 5189	1	-56.0303	17.0892	-3.28	0.0011

47.5636(Intercept) $)$ ORIGINAL_VALUE *(.00110) + Yearly_hours *(1.9703) +_CLASS_CODE 5120 * (-62.7692) + _CLASS_CODE 5121 * (-92.1433) + CLASS_CODE $5123 * *(-132.5)+$ CLASS_CODE $5189 *(-556.0303)+$ CLASS_CODE $5191 *(53.9059)+$ CLASS_CODE $5236 *(62.4718)+$ CLASS_CODE
$5237 *(260.2)+$ CLASS CODE $5238 *(75.4559)+$ CLASS CODE $5355 *(-70.8765)+$ CLASS CODE $5357 *-(-97.7508)+$ CLASS CODE 5360 *-(-64.3132) $5237 *(260.2)+$ _CLASS_CODE $5238 *(75.4559)+$ _CLASS_CODE $5355 *(-70.8765)+$ _CLASS_CODE $5357 *(-97.7508)+$ CLASS_CODE $5360 *(-64.3132)$ Equation 1. Fuel consumption predictive model for the equipment charged by dollar/hour
8.5127 (intercept) + Age $*(-18.2660)+$ YEARLY_MILES * (0.1075) + ORIGINAL_VALUE * (.O0614) + CURRENT_ODOMETER* (.O0115) + CLASS_CODE_ID

 +CLASS_CODE_ID $5394 *(-213.8)+$ CLASS_CODE_ID $5395 *(-780.9)+$ CLASS_CODE_ID $5398 *(-332)+$ CLASS_CODE_ID $5399 *(59.6537)$
+CLASS_CODE_ID 5401 $(-100.9)+$ CLASS_CODE_ID 5402 $*(-39.3478)+$ CLASS_CODE_ID $5404 *(99.8479)+$ CLASS_CODE_ID $5407 *(-46.6372)+$ CLASS_CODE_ID 5418*(247.9)+CLASSS_CODE_ID 5419*(232.5) + CLASS_CODE_ID 5420*(164.2)+CLASS_CODE_ID 5421*(142.1)+ CLASS_CODE_ID $5425 *(436.7)+$ CLASS_CODE_ID 5427*(148.1) +CLASS_CODE_ID $5428 *(701.7)+$ CLASS_CODE_ID $5429 *(403.4)$ CLASS_CODE_ID $5430 *(337.3)+$ CLASS_CODE_ID $5431 *(339.5)+$ CLASS_CODE_ID $5433 *(634.4)+$ CLASS_CODE_ID $5434 *(136.4)$ CLASS CODE ID 5442 * (-596.3)
Equation 2. Fuel consumption predictive model for the equipment charged by dollar/mile
347.1 (intercept) + EQUIPMENT_CLASS_CODE_ID 5121 * (-2788.3) +EQUIPMENT_CLASS_CODE_ID 5123 * (-2581.6) +EQUIPMENT_CLASS_CODE_ID $5189 *(-1691.9)+$ EQUUPMENT_CLASS_CODE_ID $5237 *(14100.3)+$ EQUIPMENT_CLASS_CODE_ID $5238 *(3729.5)+$ EQUIPMENT_CLASS_CODE_ID $5355 *(-1947.3)+$ EQUUPMENT_CLASS_CODE_ID $5357 *(-1175.3)+$ EQUIPMENT_CLASS_CODE_ID $5360 *(-3356.9)+$ EQUIPMENT_CLASS_CODE_ID 5375 * (-1911.4) +CURRENT_ODOMETER*CURRENT_ODOMETER* CURRENT_ODOMETER * (1.318E-6) + CURRENT_ODOMETER*CURRENT_ODOMETER*Useful_life_eq * (-0.00025) + CURRENT_ODOMETER*CURRENT_ODOMETER*age * (-0.00080) + Equation 3. Maintenance Cost predictive model for the equipment charged by dollar/hour
42546.4 (intercept) + age (-27877.2) + age *age (6797.3) + CURRENT_ODOMETER*CURRENT_ODOMETER*age (8.214E-8)
CURRENT ODOMETER*ORIGINAL VALUE*age ($-2.78 E-7$) +age *age *age (-457.5) + EOUIPMENT CLASS CODE ID 5085

CURRENT_ODOMETER*ORIGINAL_VALUE*age (-2.78E-7) +age *age *age (-457.5) +EQUIPMENT_CLASS_CODE_ID 5085 * (-7795.5) + EQUIPMENT_CLASS_CODE_ID $5086 *(39985.8)+$ EQUIPMENT_CLASS_CODE_ID $5089 *(1102.8)+$ EQUIPMENT_CLASS_CODE_ID $5090 *(966.8)+$
EQUIPMENT CLASS CODE ID $5385 *(-2335)+$ EOUIPMENT CLASS CODE ID $5386 *(4278.2)+$ EQUPMPNET CLASS CODE 5393 EQUIPMENT_CLASSCODE_ID $5385 *(-2335.7)+$ EQUUPMENT_CLASS_CODE_ID $5386 *(4278.2)+$ EQUIPMENT_CLASS_CODE_ID $5393 *(-13391.5)$
EOUIPMENT CLASS CODE ID $5394 *(-2197.4)+$ EQUIPMENT CLASS CODE ID $5395 *(2516.3)+$ EQUIPMENT CLASS CODE $5399 *(-154842)$ +EQUIPMENT_CLASS_CODE_ID $5394 *(-2197.4)+$ EQUIPMENT_CLASS_CODE_ID $5395 *(2516.3)+$ EQUIPMENT_CLASS_CODE_ID $5399 *(-15484.2)$
+EQUIPMENT_CLASS_CODE_ID $5401 *(-6417.6)+$ EQUIPMENT_CLASS_CODE_ID $5407 *(-1275.4)+$ EQUIPMENT_CLASS_CODE_ID $5418 *(-4730.4)$ +EQUIPMENT_CLASS_CODE_ID $5419 *(-5336.9)+$ EQUIPMENT_CLASS_CODE_ID $5420 *(474.1)+$ EQUIPMENT_CLASS_CODE_ID $5428 *(6079)$ + EQUIPMENT_CLASS_CODE_ID $5429 *(20515.4)+$ EQUIPMENT_CLASS_CODE_ID $5431 *(253.3)+$ EQUIPMENT_CLASS_CODE_ID $5434 *(-3502.7)$ $+{ }^{+}+$EQUIPMENT_CLASS_CODE_ID $^{2} 435 *(-918.8)+$ EQUIPMENT_CLASS_CODE_ID 5441 * (-2680.5) + EQUIPMENT_CLASS_CODE_ID $5442 *(-6956.4)$ Equation 4. Maintenance Cost predictive model for the equipment charged by dollar/mile

Conclusion and Contribution

The predictive model developed in this study accounts for the prediction of fuel consumption and maintenance cost of the equipment
The result could be taken into account for budget estimation, rental rat calculations and equipment maintenance related decisions.

- Good Predictor to forecast:

Fuel Consumption

Maintenance Cost

Purchase price of the equipment
Yearly hours worked by the
equipment
Present age of the equipment equipment equipment Useful life of the equipment Purct age of the equipment Purchase price of the equipment

The predictive accuracy of the developed model depends upon the
number of data available for the equipment.

Recommendation

Similar study to be carried out to develop maintenance cost model using Similar study to be carried out to develop mainte
Another study to be pef distinguis type of the fuel consumed and developing predictive models for a type of the fuel consumed and deve
particular type of fuel consumption.
Separate maintenance cost predictive models to be developed for preventive and scheduled maintenance, and repairs and breakdowns.

Acknowledgement

- We would like to thank Oklahoma Department of

Transportation for sharing the data required for this study.

References

Abolhasani, S., Frey, H. C., Kim, K., Rasdorf, W., Lewis, P., and Pang, S.h. (2008). "Real-world in-use activity, fuel use, and emissions for nonroad h. (2008). "Real-world in-use activity, fuel use, and emissions for nonroad
construction vehicles: a case study for excavators." Journal of the Air \& Waste Management Association, 58(8), 1033-1046.

Akcelik, R., and Besley, M. "Operating cost, fuel consumption, and Akcelik, R., and Besley, M. "Operating cost, fuel consumption, and
emission models in aaSIDRA and aaMOTION." Proc., 25th conference of Australian institutes of transport research (CAITR 2003), University of Australian institutes of transport research
South Australia Adelaide, Australia, 1-15.

