Balanced Mix Design: Comparing Texas, Arkansas, and Oklahoma

NIVERSITY OF

(Balancing cracking and rutting)

October 17, 2023 Oklahoma Transportation Research Day Oklahoma City, OK

> Dr. Andrew Braham, Professor University of Arkansas

Overview

- What is balanced mix design?
 - Definition
 - Rutting and durability tests
 - NAPA resource guide
- Experiences in south-central US
 - Texas
 - Arkansas
 - Oklahoma

An asphalt mixture plant in NWA

What is in asphalt mixtures?

What is Balanced Mix Design (BMD)?

- What happened in the 80's? SHRP
 - Compaction: gyratory compactor
 - Mixture performance tests: moisture sensitivity (indirect tensile test, ITS), rutting (shear test device), cracking (indirect tensile test, IDT)
 - Binder performance tests: dynamic shear rheometer, bending beam rheometer, direct tension tester
- The pendulum
 - SHRP led to cracking
 - But rutting still on the mind
 - How to balance rutting vs. cracking?
- Performance: rutting vs. durability (cracking, moisture, abrasion loss)

Shear Test Device (Pavement Interactive)

What are the rutting options?

Potential rutting tests

- Asphalt Pavement Analyzer (APA)
 AASHTO T 340
- Hamburg Wheel Tracking (HWTT)
 AASHTO T 324
- Flow Number (FN)
 AASHTO T 378
- Hveem Stability Test
 - AASTHO T 246
- Other potential tests
 - Superpave Shear Test (SST): AASHTO T 320
 - IDEAL-RT: ASTM D8360

Testing a sample (HWTT, photo from T. Ansari)

What are the cracking options?

Potential cracking tests

- Low temperature/reflective cracking
 - BBR mixture testing: AASHTO TP 125
 - Disc-shaped compact tension [DC(T)]: ASTM D 7313
 - Indirect Tensile Creep Compliance/Strength: AASHTO T 322
 - Semi-circular bend (low temp): AASHTO T 394
- Fatigue
 - Direct tension cyclic fatigue: AASHTO TP 107
 - Flexural bending beam fatigue: AASHTO T 321
- Intermediate temperature
 - Illinois Flexibility Index: AASHTO T 393
 - IDEAL-CT: ASTM D8225
 - Semi-circular bend (inter. temp): ASTM D8044
- Other tests
 - Uniaxial thermal stress and strain: ASTM WK60626
 - Overlay test: Tex-248-F
 - Indirect tensile energy ratio
 - Indirect tensile fracture energy

Potential moisture damage and abrasion tests

- Moisture
 - HWTT: AASHTO T 324
 - Indirect Tensile Strength (ITS): AASHTO T 283
 - Moisture Induced Stress Tester (MIST): ASTM D7870
- Abrasion
 - Abrasion loss (Cantabro): AASHTO TP 108

See AASHTO MP 46 – includes summary of state highway agencies

MIST (hmalabsupply.com)

NAPA Balanced Mix Design Resource Guide

- IS-143
 - Executed by NCAT, 2021
- Four approaches (with case study summaries)
 - Approach A: Volumetric design, performance verification: IL, LA, NJ, TX, VA, VT
 - Approach B: Volumetric design, performance optimization: no states
 - Approach C: Performance-modified volumetric design: CA, MO, OK
 - Approach D: Performance design: AL, TN, VA
- Multiple guidance sections
 - Selecting mixture performance tests
 - Establishing test criteria
 - Modify existing mix designs

NATIONAL ASPHALT PAVEMENT ASSOCIATION

Shifting gears

BMD overview

Three specific state examples: TX, AR, OK

(image from classicdriver.com)

8

Texas DOT (TxDOT)

- Special Specification 3074: Superpave Mixtures – Balanced Mix Design
 - Search: TxDOT Special Specification 3074
- Six sections
 - 1. Description
 - 2. Materials*
 - 3. Equipment
 - 4. Construction*
 - 5. Measurement
 - 6. Payment

(gisgeography.com)

TxDOT: materials

- Aggregate
 - Coarse aggregate: surface area classification, deleterious materials, decantation, Micro-Deval, LA Abrasion, magnesium sulfate soundness, crushed face count, 5:1 flat and elongated
 - Fine aggregate: linear shrinkage, sand equivalent
- Binder: any PG grade with $\Delta T_{C} > -6.0^{\circ}C$
- All allowed: mineral filler, baghouse fines, RAP, RAS, antistripping agent, compaction aid, rejuvenators
- Tack coat: CSS-1H, SS-1H, hot asphalt binder, "specialized" tack coat materials (i.e. reduced tracking tack)

Nothing out of the ordinary

TxDOT: construction

- Various testing requirements
 - Aggregate/recycled material testing
 - Asphalt binder, tack coat sampling
 - Mix design and verification
 - Production and placement testing
- Mix design
 - Two gradation bands
 - 35-50 gyrations
 - Dry IDT: 85-200 psi
 - Boil test
 - Hamburg wheel tracking
 - Overlay test

Tab	le 11A (Tex-242-	
Hamburg Wheel Test Requirements		
High-Temperature Minimum # of Passes @ 12.		
Binder Grade	mm ¹ Rut Depth, Tested @ 50°C	
PG 64 or lower	10,000 ²	
PG 70	15,000 ³	
PG 76 or higher	20,000	

Table 11B	(Tex-248-F)		
Overlay Test Requirements			
Mixture Property	Surface Mixtures		
Critical Fracture Energy (CFE), inlb/in. ² , Min	1.0		
Crack Progression Rate (CPR), Max	0.45		

What about placement?

TxDOT: placement acceptance

- In-place air voids
- Segregation
 - Density or
 - Thermal imaging
- Longitudinal joint density
- Ride quality

Asphalt being placed in NWA

Search: TxDOT Special Specification 3074

Arkansas DOT

- Research in progress (as of October 2023)
- Hybrid CD approach:
 - Conduct rutting/cracking tests at four P_b, float N_{des}
 - Select optimal binder content
 - Run moisture damage tests
 - Measure required volumetric properties
 - Establish job mix formula for production
- Experimental matrix

Three aggregate	Four gyration	Four asphalt
gradations	levels	binder levels
Fine: 0% RAP	40	-0.5% P _{bi}
Fine: 15% RAP	55	P _{bi}
Coarse: 0% RAP	70	+0.5% P _{bi}
	85	+1.0% P _{bi}

(gisgeography.com)

ARDOT: Testing

- APA, Flow number
- Cracking tests:
 - IDEAL-CT, I-FIT
- Other tests:

- Compaction metrics, TSR, Dynamic Modulus, S-VECD, HWTT
- 2023: five projects placed (or will be placed) in the field
 - North, northeast, central, southeast

Please check back in 2024!

Oklahoma

- Objectives of pavement
 - Reduce cracking potential
 - Extend life
 - Sustainable and cost effective
 - Simply design process
 - Allow use of new/innovative technologies
- BMD performance tests
 - HWTT for rutting
 - IDEAL-CT) for cracking ($CT_{index} \ge 100$ surface, ≥ 60 intermediate)

Four phase approach for implementation

(gisgeography.com)

Implementation

- Phase 1: evaluation
 - 2018: literature review, equipment, test selection, shadow projects (4)
- Phase 2: proof of concept
 - 2022: initial special provision, identify challenges, pilot projects (11)
- Phase 3: long-term evaluation
 - 2023: benchmarking, field study, aging protocols, pilot projects (4)
- Phase 4: implementation

 2024: partnerships, field QC/QA, implementation projects (>8)

From Suitor and Vivanco, ODOT

Let's take a look at the special provisions

Special provisions

- Performance tests: IDEAL-CT and HWTT
- Short term age prior to compaction, 4 h ± 5 min
 - $-240 \pm 10^{\circ}$ F for WMA
 - $-275 \pm 10^{\circ}$ F for HMA
- May contain RAP
 - Intermediate course (≤20%) up to 30% with soft binder
 - Surface course (≤15%) up to 25% with soft binder
- N_{des} 96-97% G_{mm}
- Design according to AASHTO MP 46 Approach B
 - Volumetric design, performance optimization
- Pay adjustment factors modified for density/air voids

Thank you to David Vivanco for help with ODOT info 17

Testing a sample (IDEAL-CT, photo from T. Ansari)

Conclusions

- What is balanced mix design?
 - Definition
 - Rutting and durability tests
 - NAPA resource guide
- Experiences in south-central US
 - Texas
 - Arkansas
 - Oklahoma

Andrew F. Braham, Ph.D., P.E. Professor Civil Engineering

4190 Bell Engineering Center Fayetteville, AR 72701 e-mail: afbraham@uark.edu Phone: 479-575-6028 Fax: 479-575-7168 www.andrewbraham.com

