# VISUALIZING THE IMPACT OF CONCURRENT SCHEDULE DELAYS USING LINEAR SCHEDULING METHOD

DOUGLAS D. GRANSBERG, PHD, PE





P.O. Box 2395, Norman, Oklahoma 73070 405-503-3393 dgransberg@gransberg.com http://www.gransberg.com

© 2021. ALL RIGHTS RESERVED. DOUGLAS D. GRANSBERG

#### YOUR INSTRUCTOR

Transform I-285/SR-400 P3 Project – Atlanta, GA



- 20 years industry experience:
  - US Army Corps of Engineers
  - First DB project 1985
  - > \$200 million in USACE DB projects
  - Warranted Contracting Officer
- 23 years academic: Texas Tech; OU; ISU



Panama Canal Expansion Project



Sellwood Bridge – Multnomah County, OR

- > \$12 billion Alternative delivery projects: Highway, Bridges, Commuter Rail, Water Treatment.
- Helped > 20 public agencies implement first alternative delivery projects

Consultant – Construction Management, Project Delivery, Cost Engineering

- US Forest Service; BLM; DOE; DoD; FHWA; 16 State DOTs; City of Seattle; NYC Transit Authority; City of Sioux Falls, SD; San Antonio Water System; Santa Clara Valley Water District; Sarasota Cty, FL; Hennepin Cty, MN.
- Canada; Curacao; Okinawa; Korea; New Zealand; Panama; Brazil; Turkey; Central Asia; Middle East; Europe



#### **OBJECTIVE**

#### Objective:

- Review the construction claims doctrine of concurrent delays
- Demonstrate the use of the Linear Scheduling Method (LSM) as a data processing and visualization tool to improve decision making and evaluate delays in construction projects.
- Disclaimer: I am not a lawyer. The following discussion of legal concepts is based solely on my interpretation of them developed during past experience with forensic schedule delay analysis.



#### INTRODUCTION

- In most construction projects, data is collected periodically for production and quality control/assurance records.
- This data, which typically holds contractual validity, is often not utilized to its full potential.
- An opportunity exists to manage this information to improve decision making and use it effectively in case of a delay-related dispute.
- The Linear Scheduling Method (LSM) provides an alternative means to the Critical Path Method (CPM) use this information.



#### CONCURRENT DELAY PRINCIPLES

#### **MODULE I**





P.O. Box 2395, Norman, Oklahoma 73070 405-503-3393 dgransberg@gransberg.com http://www.gransberg.com

© 2021, ALL RIGHTS RESERVED, DOUGLAS D. GRANSBERG

#### KEY POINTS ON PROVING A DELAY

- Three types of paths on the "official" baseline schedule:
  - Critical: Has no float
  - Non-Critical: Has float
  - Near-Critical: Has float but amount is small
- Only delays on the critical path can delay the project, i.e. justify an extension of the contract.
- Delay analysis requires an up-to-date as-built schedule to compare to the approved as-bid schedule.



#### WHAT IS A CONCURRENT DELAY?

- Concurrent delays are independent sources of delay that occur at the same time.
- When a <u>non-excusable delay</u> is concurrent with an <u>excusable delay</u>, the Contractor is not entitled to an extension of Contract Time for the period the non-excusable delay is concurrent with the excusable delay.
- When a <u>non-compensable delay</u> is concurrent with a <u>compensable delay</u>, the Contractor is entitled to an extension of Contract Time, but not entitled to compensation for the period the non-compensable delay is concurrent with the compensable delay.



#### **DEFINITIONS**

- Non-excusable delay: Delays that are the contractor's responsibility and for which the contractor is not due any additional time or delay damage compensation.
- Excusable delay: Delays that are either the owner's responsibility or caused by some form of a force majeure event that was not the owner's or the contractor's responsibility





#### **DEFINITIONS**

- Excusable, compensable delay: Delay the is solely the responsibility of the owner and, as such, the contractor is entitled to recover its delay damages in addition to a time extension.
- Excusable non-compensable delay: Delay that is not the fault of either the owner or the contractor and generally are considered to be *force majeure-type* events for which the contractor is <u>only</u> due a time extension.

#### **CONCURRENCY ISSUES**

- Both delays must be critical to qualify as concurrent.
- If one is not, "lack of an actual concurrent delay" is an owner's defense against time extension.
- Exception: if one of the delays is "near-critical," may qualify if impact of the near-critical delay could change the critical path.





#### TYPES OF CONCURRENCY

- Literal: Delays that are "happening at the same time."
- Functional: Delays that "need to be occurring within the same analysis period."
  - Example: Analysis period is month; two delays
    - One occurred in first 5 days of the analysis month One occurred in last 5 days of the analysis month
    - Functional concurrency is satisfied
- Dueling delays resolved using "primacy of delay" principle
  - Event that caused the delay first is primary
  - Sole driver of delay because it creates float in other paths





#### SIMPLE CONCURRENCY EXAMPLE

- Contractor fails to procure precast members in time to install as schedule and activity was critical – Non-excusable
- Later in the same analysis period, Owner issues a change order that alters the planned sequence of erection work - Excusable.
- Contractor argues functional concurrency
- Owner argues literal concurrency; i.e. lack of concurrency





#### **OVERVIEW**

- The resolution of concurrent delays is complex and often confusing.
- When using CPM as the basis for forensic analysis of delays, it is difficult to visualize the actual impact of multiple delays because CPM is activity based and uses a network to display the relationships.
- Objective is to document what actually happened and what actually was impacted.
- Both parties need to be able to "see" multiple relationships.
- Achieve a mutually agreed "picture" of actual events and avoid litigation.

# BRIEF INTRODUCTION TO LINEAR SCHEDULING METHOD

MODULE 2





P.O. Box 2395, Norman, Oklahoma 73070 405-503-3393 dgransberg@gransberg.com http://www.gransberg.com

#### THE USE OF LSM IN CONSTRUCTION

#### How is LSM used in

#### Construction?

- The method is best suited for projects that follow a linear path, such as: ports, bridges, pipelines, dams, roads and channels, among others.
- It can be intuitively implemented in any project that involves repetitive production and follows an alignment. But it is flexible enough for other applications.



\*Amador Causeway, Panama City, Panama (Author: Ricardo M. Tapia)





#### THE LSM CONCEPT

- What is a Linear Schedule?
  - Developed in the 50s. Also called Line of Balance, Time-Distance Diagram or March Chart.
  - It is a graphical scheduling method
    - Physical Alignment (stationing) in the X Axis
    - Time in the Y axis
  - Activities are modeled as lines, blocks or dots based production rates.
  - Physical, resource and logic constraints are easily identified.
  - The complete schedule can be represented in a single chart.





#### THE LSM CONCEPT

- Comparison with the Critical Path Method
  - Based on production rates, not activity durations.
  - The units of measure are time and distance
  - LSM was developed before, but it was replaced by CPM due to the manual fashion in which it was used at the time.







#### THE USE OF LAMING CONSTRUCTION Nanning: Second Metro





#### FORENSIC CLAIM ANALYSIS MODEL

Use the linear scheduling format as a communication tool to explaining the events that either support or deny a contractual breach.

- Daily Reports as <u>data source</u>: Actual work performed between stations in a given date.
- Use the linear scheduling model: x-axis as physical alignment and y-axis as time.
- No activities or production rates, just <u>actual data</u> plotted as lines.
- Influential factors added graphically, such as underground conditions, rainfall data, production as volumes or any other physical unit within the time unit, All RIGHTS RESERVED, DOUGLAS D. GRANSBERG

#### DEEP DATA ANALYTICS OF DAILY WORK **REPORT DATA**

Digital Daily Work Report (DWR) Systems have been developed and used by US public agencies and private industry.







#### **AUTOMATED AS-BUILT SCHEDULES**

- Shows actual sequences and durations of construction activities
- Takes account of change orders and schedule changes from the originally planned schedule
- Project level vs activity level as-builts







#### **PLANNED VERSUS ACTUAL**



#### **ACTIVITY LEVEL AS-BUILT ANALYSIS**

- Detailed project control
- Identify dates when productivity was low
- Predict time to complete the task based on the current productivity
- Manage inspection resources







#### **ACTUAL TO FORENSIC**





## CONCURRENT DELAY PRINCIPLE CASE STUDY

MODULE 3





P.O. Box 2395, Norman, Oklahoma 73070 405-503-3393 dgransberg@gransberg.com http://www.gransberg.com

### THE BORINQUEN DAM IE – PANAMA CANAL EXPANSION PROJECT

- Length: 2.3 Kilometers (1.4 miles)
- Volume: 5 million cubic meters (6.54 million cubic yards)
- Embankment dam with an impervious residual soil core, multi-zone filters, rockfill body, rip-rap shell, treated foundation, and a pressure grouted curtain below it.





#### THE PROJECT ON A NON-RAINY DAY







#### THE BORINQUEN DAM IE -**FORENSIC MODEL**

- Borinquen Dam IE Forensic Linear Schedule Model
  - Extract data from daily reports:
    - Activity Type

| Task-ID | Name      | Date      | Start.Distance | End.Distance | +984 extendido zona 6.<br>+125 compactado zona 5.                              |
|---------|-----------|-----------|----------------|--------------|--------------------------------------------------------------------------------|
| A-00001 | / Capa I  | 16-Jul-13 | 620            | 630          | +125 compactado zona 6.<br>+125 extendido zona 6.                              |
| A-00002 | / Capa 2  | 17-Jul-13 | 645            | 670          | +125 compactado zona 3b.<br> +125 extendido zona 3b.                           |
| A-00003 | / Capa 3  | 17-Jul-13 | 620            | 630          | )+985 extendido zona 3b.<br> +350 compactado zona 5.                           |
| A-00004 | / Capa 4  | 23-Jul-13 | 645            | 675          | +350 extendido zona 5.<br>+350 compactado zona 6.                              |
| A-00005 | / Capa 5  | 24-Jul-13 | 660            | 670          | +350 en proceso de extendido zona 6.<br>+582 parcialmente compactado zona 5.   |
| A-00006 | / Capa 6  | 24-Jul-13 | 675            | 695          | +415 compactado zona 3b.<br>+350 extendido zona 3b.<br>+590 compactado zona 6. |
| A-00007 | / Capa 7  | 24-Jul-13 | 660            | 670          | +581 sin iniciar zona 6.<br> +580 compactado zona 3b.                          |
| A-00008 | / Capa 8  | 25-Jul-13 | 675            | 695          | +580 extendido zona 3b.                                                        |
| A-00009 | / Capa 9  | 25-Jul-13 | 670            | 695          | +900 compactado zona 3ª.                                                       |
| A-00010 | / Capa 10 | 25-Jul-13 | 660            | 670          | +143 compactado zona 3".<br>+900 en proceso de extendido zona 3".              |
| A-00011 | / Capa 11 | 25-Jul-13 | 695            | 700          | +142 extendido zona 3ª.<br>+711 compactado zona 5.                             |
| A-00012 | / Capa 12 | 25-Jul-13 | 660            | 670          | +711 compactado zona 6.<br>+712 en proceso de extendido zona 5.                |
| A-00013 | / Capa 13 | 25-Jul-13 | 690            | 700          | +712 en proceso de extendido zona 6.                                           |

INFORME DE CONTROL DE CALIDAD (QCR) FECHA

ARCILLA PK 0+448 @ 2+713 FILTROS PK 0+447 @ 2+745 ROCK FILL PK 0+448 @ 2+745

Capa 1660: 1+625 a 1+900 extendido. Capa 1633(1): 2+190 a 2+240 discado y compactado.

Capa 1637: 2+240 a 2+300 discado y compactado. Capa 1663: 2+650 a 2+713 extendido. Capa 1662: 2+520 a 2+650 extendido.

Capa 1657: 1+130 a 1+350 discado y compactado. Capa 1664: 1+350 a 1+581 extendido, discado y compactado.

- Turno 06:00 a.m. a 5:30 p.m. Trabajos realizados:

Filtros Zona Chimenea

INFORME NO.

CACION:

ATURA

TACIÓN:

PARA EL

ando apropiadamente)

En otras

actividades 21

13

UCTION (SECTION





#### DESIGN TO CONSTRUCTION VISUALIZATION













### BORINQUEN DAM IE MODEL – RAINFALL AND PRODUCTION







#### **SUMMARY**

- The proposed method is a <u>new application</u> of the LSM as a data visualization tool that previously did not exist in the literature.
  - Can be used for forensic analysis or as a project controls tool, providing accurate and objective results.
  - Uses data that is typically collected in a construction project (daily production reports).
- The <u>correlation of information</u> is the biggest advantage of this method, as the effect of influencing factors in way the activities were performed is sometimes not apparent in traditional scheduling tools.
- It is a great <u>communication</u> tool for explaining how events developed in a complex project. Saves time and conveys the message <u>objectively</u>.



#### **CURRENT APPLICATIONS**

- COVID 19 is a Force Majeure event Excusable non-compensable delay... time only.
- Concurrent delays that may have occurred
  - Owner stop work orders
  - Contractor supply chain issues
  - Weather events
  - Delayed permits
  - Reduced production due to PPE, virus testing, etc.
- Other factors
  - Decreased traffic volumes
- Ability to accelerate production





#### **FUTURE APPLICATIONS**

- LSM forensic analysis provides
  - Single picture of events based on
    - Documented production records
    - Quality assurance/quality control records
    - Actual weather data
    - Other objective information
- As the industry moves to post-COVID infrastructure projects, LSM provides a tool to achieve a fair and equitable resolution of the pandemic-related and other events.



#### **WRAP-UP**

- Thank you for your participation
- Please fill out and hand in evaluation forms
- Let me know if I can ever be of service
  - dgransberg@gransberg.com



