CHALMERS

UNIVERSITY OF TECHNOLOGY

FIBER REINFORCED POLYMER CULVERT BRIDGES – A FEASIBILITY STUDY FROM STRUCTURAL AND LIFE CYCLE COST POINTS OF VIEW

REZA HAGHANI

VISITING RESEARCHER

DEPARTMENT OF CIVIL, ENVIRONMENTAL AND EARTH SCIENCES AT THE UNIVERSITY OF OKLAHOMA

MY RESEARCH

- Fiber reinforced polymer (FRP) composites
 - → Repair and strengthening (steel, concrete, timber)
 - \rightarrow Material characterization, testing and simulation
 - \rightarrow Durability of FRP structures

 \rightarrow FRP structures – ABC (design, modularization, standardization, connections)

- Timber and steel structures (stability & fatigue)
- Reuse of decommissioned/EoL FRP parts (e.g. turbine blades)
- Bio-composites

NyTeknik

Premium / Automation / Digitalisering / Energi / Fordon / Startup / Ingenjörskarriär / Lediga

OPINION

0 o 6 o o Sverige rostar för 90 miljarder

Det här är en debattartikel. Åsikterna som framförs är skribentens egna.

Kostnader för korrosion uppgår varje år till runt 90 miljarder kronor i Sverige. Satsar vi på forskning och utveckling av korrosionsskyddsteknik kan kostnaderna minskas med 25–30 procent. Att staten valt att skära ned anslagen till forskning på korrosion är därför anmärkningsvärt, skriver Korrosionsinstitutets vd, Björn Linder.

- There exist about 617,000 bridges across the United States of which:
 - 42% are at least 50 years old (avg. 44 years),
 - 8% (50,000 bridges) are structurally deficient and accommodate 178 million trips every day.
 - Backlog of bridge repair is \$125 b
 - Annual spending needs to be increased from \$14.4b to \$22.7b to catch up (58% ↑)

(www.infrastructurereportcard.org)

CULVERT BRIDGES

- Road and railway infrastructure rely on culverts
- Definition of culvert bridge (>8')
- 4500 culvert bridges in Sweden

COLLAPSE CASES

OVERVIEW

- History of the culvert (bridges)
- Structural system
- Failure modes and maintenance
- FRP as an alternative building material
- Feasibility of FRP culvert bridges (behavior&cost)
- Conclusions
- Q&A

CHALMERS UNIVERSITY OF TECHNOLOGY

CULVERT BRIDGES

CULVERT BRIDGES

- + Easy production
- + Cost efficiency
- + Geometric adaptability
- + Rapid construction
- + Aesthetics
- Highly reliant on soil-structure inter.
- Catastrophic collapse
- Very costly to replace

DESIGN ASPECTS

- Economy
- Hydrological aspects (flow calc.)
- Hydraulics of the culvert
- Geotechnical considerations
- Electrochemical props of soil
- Structural design
 - Steel structure
 - Soil compaction
 - Soil-structure interaction

STRUCTURAL SYSTEM

STRUCTURAL SYSTEM

MANUFACTURING AND CONSTRUCTION

PROPER SOIL COMPACTION IS THE KEY

COMMON ISSUES

- Excessive backup of water at the upstream,
- Diminished ability to carry the water,
- The road settlement,
- Movements of the headwalls,
- Washout at the downstream
- Significant corrosion of the steel/compromised backfill,
- Fatigue issues

ASSESSMENT AND EVALUATION

- According to TRV: general inspections (every two years) and detailed inspections (every threefive years)
- Visual inspection combined with the overall assessment of the culvert geometry
- Ultrasonic testing is widely used during detailed inspections to measure the residual thickness.

Laser ring scanner

Ultrasonic test

REHABILIATION

- Liner solutions (full/partial)
- Parallel alternatives (jack & bore)
- Pipe consumption method
- Partial tunneling
- Protective (shotcrete/geopolymer lining)

SPECIFIC ISSUES

LONG-TERM PERFORMANCE CONSIDERATIONS

Zinc protection

Bare steel corrosion

- Expected service life of 80 years
- Extra steel thickness (in Sweden 20% extra material)
- Electrochemical props of backfill

Alternative materials?

Increasing design loads

 The soil cover is advised to be at least 1m (3'3") in Sweden

FIBER REINFORCED POLYMER (FRP)

Combinations

<u>Fiber</u> Carbon Glass Aramid Basalt

Matrix Polyester Vinylester Epoxy Polyurethane

25 µm

CHARACTERISTICS

-

Published 11/16/2020 | 2 MINUTE READ

Strength of composite whale tail sculpture saves runaway train car

A 19-year-old, glass fiber-reinforced composite urban sculpture designed by Dutch engineering firm Solico was able to safely bear the weight of an off-track rail vehicle.

EDITED BY HANNAH MASON Associate Editor, CompositesWorld

SHARE

f in У 🖾 🖨

READ NEXT

- > Building the Museum of the Future
- Composites fill the gaps in museum dinosaur skeletons
- Composites industry continues 2022 upswing

Epoxies for high-performance composite manufacturing

Laminating | Infusion | High-Temp Tooling | Adhesive

Learn More

The One Stop Tech Shop for Aerospace, Composites, Industrial, Marine and Tooling Needs.

Non-metallic radar domes 1941

Chevrolette Corvette 1953

Vultee BT-15 1944

Wind energy 1970s

WELL-ESTABLISHED IN AEROSPACE, MARINE, SPORTS AND WIND ENERGY

FRP IN CONSTRUCTION

The Monsanto House of Future" 1957-1967

Strengthening & repair 1980s

Marine infrastructure 1990s

Bridge construction 2000s

PRODUCTION METHODS

Vacuum injection

Filament winding

Pultrusion

PULTRUSION

- + Good production tolerances+ Well-controlled quality
- Limited flexibility (form & properties)

2022-05-31

PULTRUSION

FRP deck – Fiberline, DKSpan:27 m (89 feet)Bridge width:5,0 m (16 feet)Weight:60 t

VACUUM INJECTION

+ More suitable for large elements+ Respects "bridge uniqueness"

- "Low repeatability"
 - still not considered "industrial"
- Expensive formwork

VACUUM INJECTION

FILAMENT WINDING

- + Suited for circular sections+ Possible on-site production
- High QC measures needed

FRP IN UNDERGROUND APPLICATIONS

REPAIR AND REFURBISHMENT

Relining using FRP

FRP IN CULVERT BRIDGES

(composite arch bridge) Developed at the University of Maine, 18 bridges have been built

2022-05-31

Chalmers University of Technology

FRP CULVERTS

STRUCTURAL DESIGN

STRUCTURAL FEASIBILITY

16 different cases:

- Two culvert types
- Three spans
- Four soil cover thickness

Culvert Profile	Span	Height of Soil Cover	Case No.
	[meter] (feet)	[meter] (feet)	
er III		0,50 (1'8")	01
	2 (0'10")	0,75 (2'6")	02
<u>R</u> ,	3 (9 10)	1,00 (3'3")	03
Н		3,00 (9'10")	04
		0,50 (1'8")	05
R.	0 (4010")	0,75 (2'6")	06
	6 (19.8.)	1,00 (3'3")	07
Pipe-arch		08	
		0,50 (1'8")	09
	6 (10'0")	0,75 (2'6")	10
	0(190)	1,00 (3'3")	11
P		3,00 (9'10")	12
R_s H h		0,50 (1'8")	13
	40 (00/4")	0,75 (2'6")	14
_ 	12 (394)	1,00 (3'3")	15
Box		3,00 (9'10")	16

DETAILED DESIGN

Culvert Profile		Verification					
	CT C	Check 1: yielding in the upper section when backfilling till crown					
	SLS	Check 2: yielding in the upper section when soil cover completed					
		Check 3: Local buckling					
		Check 4: Plastic hinge in the crown, N & M					
		Check 5: Plastic hinge in the crown, N (M=0)					
	ULS	Check 6: Capacity in the bottom section					
Pipe-arch Culvert		Check 7: Capacity of Bolts, shear stress					
		Check 8: Capacity of bolts, tensile stress					
		Check 9: Capacity of bolts, interaction					
		Check 10: Fatigue of the plate					
	F (1)	Check 11: fatigue of Bolts, shear stress					
	Fatigue	Check 12: fatigue of Bolts, tensile stress					
		Check 13: fatigue of Bolts, interaction					

Culvert Profile		Verification						
	SLS	Check 1: yielding in the upper section when backfilling till crown						
		Check 2: yielding in the upper section when soil cover completed						
-		Check 3: Local buckling						
		Check 4: Plastic hinge in the crown, N & M						
		Check 5: Plastic hinge in the crown, N (M=0)						
		Check 6: Plastic hinge in the corner, N & M						
	ULS	Check 7: Plastic hinge in the corner, N (M=0)						
Box Culvert		Check 8: Capacity of Bolts, shear stress						
		Check 9: Capacity of bolts, tensile stress						
		Check 10: Capacity of bolts, interaction						
		Check 11: Fatigue of the plate						
	Fatigue	Check 12: fatigue of Bolts, shear stress						
		Check 13: fatigue of Bolts, tensile stress						
		Check 14: fatigue of Bolts interaction						

-

DETAILED DESIGN

			Corruga	Corrugated Plates		Bolts				Verification											
	No	Span	¹ hc		Thickness	² Reinf. Top	Reinf. Corner	³ Number of Bolts	SLS					ULS					Fati	gue	
		[m]	[m]		4-7 mm			[1/m]	Check 1	Check 2	Check 4	Check 5	Check 6	Check 7	Check 8	Check 9	Check 10	Check 11	Check 12	Check 13	Check 14
	9		0,50		7	Yes	No	15	0,05	0,51	0,99	0,74	0,73	0,13	0,21	0,55	0,61	1,11	0,28	3,95	61,47
	10	6	0,75		5	Yes	No	15	0,07	0,46	0,83	0,52	0,79	0,12	0,25	0,33	0,43	0,92	0,22	2,32	12,54
	11	0	1,00		4	Yes	No	15	0,08	0,42	0,73	0,41	0,86	0,13	0,29	0,23	0,34	0,76	0,19	1,55	3,69
D	12		3,00	380*	7	No	No	10	0,15	0,87	0,99	0,21	0,74	0,09	0,38	0,40	0,67	0,52	0,19	0,8 5	0,61
вох	13		0,50	140	7	Yes	No	15	0,04	0,56	1,59	1,16	0,87	0,19	0,28	0,57	0,69	1,05	0,28	3,74	52 ,38
	14	10	0,75		7	Yes	No	15	0,04	0,47	1,22	0,80	0,83	0,14	0,28	0,46	0,61	0,76	0,22	2,70	19,73
	15	12	1,00		7	Yes	No	15	0,04	0,43	1,02	0,63	0,84	0,12	0,29	0,41	0,58	0,59	0,19	2,12	9,51
	16		3,00		7	Yes	Yes	15	0,04	0,70	0,9 5	0,28	0,68	0,10	0,53	0,64	0,99	0,26	0,16	0,95	0,85

Plast crown

¹h_c—Height of the soil cover

Reinf-Reinforcement plates in the top region or corner region

^aThe maximum number of bolts that can be used in the steel plates with corrugation 380*140 is 15 per meter.

Failue Pale

Failure Toints

Siktån at Rörbäcksnäs

A limit of L/400 was imposed in the SLS! e_{max}<0.15e_{ult} Soil-FRP: Hard contact, No friction

Elastic Constants	FRP Composite by Vacuum Infusion									
Characteristic	E_1	E_2	n 12	G12	G23	S LT	S LC	Е	n	ρ
value	GPa	GPa		GPa	GPa	MPa	MPa	MPa		kg/m³
	39.98	6.93	0.27	2.74	2.55	480	320	26	0.3	2600

12.4 m

FRP Laminate (inner and outer face sheets)	Core Material (Divinycell H80)
Thickness: 9 mm	Thickness at the base: 150 mm
Length (along the curve): 14.6 m	Thickness at the crown: 400 mm
Fiber: E-glass, unidirectional, and epoxy matrix	Cross-sectional area: 4.05 m ²
Fiber volume fraction: 55%	Volume: 40.5 m ³

LIFE CYCLE COST ANALYSIS

$$EAC = NPV \times \frac{r}{1 - (1 + r)^{-L}}$$

Design service life of 50 years for the steel and 100 years for the FRP

LCC ANAYSIS

.

- Discount rate $\rightarrow 4\%$
- ADT \rightarrow 146
- FRP culvert price* → 38,550 €
- Steel culvert price→ 596,000 €
- FRP culvert service life \rightarrow 100 y
- Soil cover thickness \rightarrow 750mm (2'6")

* The cost of FRP shell

MANUFACTURING

FINAL REMARKS

Why FRP composites in bridges

FINAL REMARKS

Why FRP composites in bridges

Challenges

FINAL REMARKS

Knowledge gaps, challenges and the way forward

Research & Development

Knowledge transfer (from other fields)

Knwoledge development and dissemination

Create interest Create acceptance (& build trust)

- Design rules and simplified material models

- long-term performance (a bridge lasts at least 80 years!)
- Repair and strengthening methods
- Quality assurance, inspection methods, NDT
- SHM
- Hybrid solutions (many advantages and many challenges)
- Connections

RESOURCES

https://ncspa.org/

https://webstore.ansi.org/Standards/ASTM/astma998a998m982003

Haghani R, Yang J, 2016, Application of FRP materials for construction of culvert road bridges: manufacturing and life-cycle cost analysis, available at <u>http://publications.lib.chalmers.se/records/fulltext/233171/233171.pdf</u>

Haghani R, Yang J, Gutierrez M, Eamon C, Volz J, 2021, Fiber Reinforced Polymer Culvert Bridges—A Feasibility Study from Structural and LCC Points of View, Infrastructures 6(9), 128, Available at <u>https://www.mdpi.com/2412-3811/6/9/128</u>

Tenbusch A, Dorwart B, 2009, Failing Culverts – The Geotechnical Perspective, Available at: <u>https://tenbusch.com/underground_equipment/files/FailingCulvertsGeotechnicalPerspective.pdf</u>

THANK YOU FOR YOUR ATTENTION